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We consider steady compressible Euler flow corresponding to the compressible ana-
logue of the well-known incompressible Hill’s spherical vortex (HSV). We first derive
appropriate compressible Euler equations for steady homentropic flow and show how
these may be used to define a continuation of the HSV to finite Mach number
M∞ = U∞/C∞, where U∞, C∞ are the fluid velocity and speed of sound at infinity
respectively. This is referred to as the compressible Hill’s spherical vortex (CHSV).
It corresponds to axisymmetric compressible Euler flow in which, within a vortical
bubble, the azimuthal vorticity divided by the product of the density and the distance
to the axis remains constant along streamlines, with irrotational flow outside the bub-
ble. The equations are first solved numerically using a fourth-order finite-difference
method, and then using a Rayleigh–Janzen expansion in powers of M2

∞ to order M4
∞.

When M∞ > 0, the vortical bubble is no longer spherical and its detailed shape must
be determined by matching conditions consisting of continuity of the fluid velocity
at the bubble boundary. For subsonic compressible flow the bubble boundary takes
an approximately prolate spheroidal shape with major axis aligned along the flow
direction. There is good agreement between the perturbation solution and Richardson
extrapolation of the finite difference solutions for the bubble boundary shape up to
M∞ equal to 0.5. The numerical solutions indicate that the flow first becomes locally
sonic near or at the bubble centre when M∞ ≈ 0.598 and a singularity appears to
form at the sonic point. We were unable to find shock-free steady CHSVs containing
regions of locally supersonic flow and their existence for the present continuation of
the HSV remains an open question.

1. Introduction
An understanding of the dynamics of compressible vortices is expected to be

important for investigation of both shock–vortex and shock–turbulence interactions.
Compressibility effects in vortex cores have been studied theoretically in a variety of
geometries (Mack 1960; Brown 1965; Colonius, Lele & Moin 1991). Experiments on
compressible starting vortices (Lee & Bershader 1994) show structure similar to that
of wing-tip vortices. Theoretical studies of vortex structures capable of steady self-
propagation though a compressible fluid have to date been limited to vortex pairs in
which the compact vorticity was modelled by closed free streamlines (Moore & Pullin
1987; Heister et al. 1990). The hodograph method of Moore & Pullin (1987) can be
extended to the study of vortex arrays modelling a free shear layer (Ardalan, Meiron
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& Pullin 1995) but is restricted to structures containing stagnant vortex cores. These
vortex states, although useful as a guide to the principal effects of compressibility, are
not suitable for use in numerical shock–vortex interaction studies, where a compact
vorticity and a smooth velocity field are needed to generate realistic initial states.

The objective of the present study is to present both numerical and analytical
solutions to the compressible Euler equations representing the steady self-propagation
of a vortex state which corresponds to a compressible analogue of the incompressible
Hill’s spherical vortex (HSV) (Hill 1894). This is chosen owing to its confined vorticity
and simple analytical form when M∞ = 0. In §2 we derive the basic equations
governing the continuation of the HSV to the compressible domain, under the
assumption of homentropic flow. Section 3 describes a fourth-order-accurate finite
difference scheme for solving the homentropic compressible HSV (CHSV) equations.
A perturbation method based on a Rayleigh–Janzen expansion is described in §3 and
results from both the numerical and analytical methods are given in §4. We point out
that the continuation to finite Mach number is not unique, and in the Appendix we
discuss alternative continuations based on isenthalpic flow, although no analysis or
numerical solutions are given for these vortex states. We note that numerical studies
of the interaction of a shock with a preliminary second-order-accurate version of the
present model of a compressible Hill’s spherical vortex has already been reported
(Samtaney & Pullin 1997). A similar study of the interaction of a shock with a weakly
compressible Hill’s spherical vortex has been given by Lixian, Sato & Shimizu (1997).
These authors appear to use a model vortex consisting of the incompressible velocity
field and a density field obtained from the leading-order Rayleigh–Janzen expansion.

2. Derivation of the governing equations
We start with the Euler equations for steady, inviscid and non-heat-conducting flow

∇H0 = u ∧ωωω + T ∇S, (2.1)

∇ · (ρu) = 0, (2.2)

and

(u · ∇) S = 0, (2.3)

with the immediate deduction that

(u · ∇) H0 = 0. (2.4)

Here u(x) is the velocity, p(x) the pressure, ρ(x) the density, S(x) the entropy, T (x) the
absolute temperature, H0(x) = H(x) + 1

2
u2 the total enthalpy and H(x) the enthalpy.

We now consider the formulation of a set of equations representing a compressible
version of Hill’s vortex. We employ spherical coordinates (r, θ), where where r is
distance from the origin and θ is the polar angle measured from the downstream
axis of symmetry. We use dimensionless coordinates, without change of notation, by
setting to unity a, the radius of the incompressible Hill’s spherical vortex, U∞, the
fluid speed at infinity and ρ∞, the gas density at infinity. The velocity components u
and v are defined by

u(x) = ur(r, θ) er + uθ(r, θ) eθ, (2.5)

where er, eθ are unit vectors in the r- and θ-directions respectively. We can satisfy
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continuity by the introduction of a stream function ψ(r, θ) defined by

ur =
1

ρ r2 sin θ

∂ψ

∂θ
, (2.6)

and

uθ = − 1

ρ r sin θ

∂ψ

∂r
, (2.7)

and we note that ψ(r, θ) is made dimensionless against the product a2ρ∞U∞. We shall
express the governing equations in terms of ρ(r, θ) and ψ(r, θ). We note here that
(2.3)–(2.4) imply that

S = S(ψ), (2.8)

H0 = H0(ψ). (2.9)

The vorticity of the motion is given by

ω = eφη(r, θ), (2.10)

where eφ is orthogonal to er, eθ and

η(r, θ) =
1

r

(
∂(r uθ)

∂r
− ∂ur

∂θ

)
, (2.11)

and Euler’s equation (2.1) is, in component form,

∂H0

∂r
= η uθ + T

∂S

∂r
, (2.12)

1

r

∂H0

∂θ
= −η ur +

T

r

∂S

∂θ
. (2.13)

Using (2.5)–(2.7) these can be expressed as

η

ρ r sin θ

∂ψ

∂r
= T

∂S

∂r
− ∂H0

∂r
, (2.14)

η

ρ r sin θ

∂ψ

∂θ
= T

∂S

∂θ
− ∂H0

∂θ
. (2.15)

From (2.8)–(2.9) and (2.14)–(2.15) it then follows that

η

ρ r sin θ
= T

dS

dψ
− dH0

dψ
. (2.16)

This relationship was obtained by Vazsonyi (1945) for two-dimensional flows.
We define two cases of interest: homentropic flow, S(ψ) = constant throughout the

flow with H0 = H0(ψ), and homenthalpic flow, H0(ψ) = constant throughout with
S = S(ψ). This latter case is discussed further in the Appendix. Here we consider only
the homentropic case for which (2.16) becomes

η

ρ r sin θ
= −dH0

dψ
≡ V (ψ), (2.17)

where the function V (ψ), made dimensionless against U∞/(ρ∞ a
2), is at our disposal.

Integrating (2.17) gives

H0(ψ) = −
∫ ψ

0

V (ψ′)dψ′ +H00, (2.18)
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where H00 is a constant of integration.
If we express η in terms of ψ and substitute into (2.17), then we find that

D2ψ − 1

ρ
N(ψ, ρ) = −ρ2r2 sin2 θ V (ψ), (2.19)

where the operator D2 is defined by

D2 =
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)
; (2.20)

and

N(f, g) =
∂f

∂r

∂g

∂r
+

1

r2

∂f

∂θ

∂g

∂θ
; (2.21)

(2.19) is the first of the pair of governing equations.
We have not, so far, introduced thermodynamic state equations. It is now assumed

that the fluid is a calorically perfect ideal gas. For homentropic flow it then follows
that p = Aργ where A is a constant and γ is the ratio of specific heats. Equation (2.9)
together with H0 = H + 1

2
u2 then gives

1
2
u2 +

γAργ−1

γ − 1
= H0(ψ). (2.22)

Using (2.6)–(2.7) and (2.18) and eliminating the constant A in favour of the Mach
number

M∞ = U∞/C∞,

where C∞ is the sound speed at infinity, then gives

1
2
M2
∞N (ψ, ψ) +

r2 sin2 θ ργ+1

(γ − 1)
= M2

∞ ρ
2 r2 sin2 θ

(
−
∫ ψ

0

V (ψ′) dψ′ +H00

)
. (2.23)

In the incompressible limit, the Hill’s spherical vortex is obtained by the choice
V (ψ) = −Ω0 where

Ω0 = 15
2

(inside the HSV),

Ω0 = 0 (outside the HSV).

}
(2.24)

We retain this value of V (ψ) for the compressible case and it is this that defines the
present homentropic continuation of the HSV to M∞ > 0. With our choice of V (ψ),
(2.19) and (2.23) become respectively

D2ψ − 1

ρ
N (ψ, ρ) = Ω0 ρ

2 r2 sin2 θ, (2.25)

1
2
M2
∞N(ψ, ψ) + r2 sin2 θ

ργ+1

(γ − 1)
= M2

∞ρ
2 r2 sin2 θ (H00 + Ω0 ψ) , (2.26)

or, if q(r, θ) is the speed of the fluid

1
2
M2
∞ q

2 +
ρ(γ−1)

(γ − 1)
= M2

∞ (H00 + Ω0ψ) . (2.27)

However we know from our choice of scales that q = 1 and ρ = 1 at infinity, so that

H00 =
1

2
+

1

(γ − 1)M2
∞
. (2.28)
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We insist that the fluid speed and density are continuous across the vortex boundary.
But Ω0 is discontinuous across this boundary. To secure continuity of ρ, then, we
must have ψ = 0 on the vortex boundary.

We can now state the mathematical problem as follows: we seek a stream function
ψ(r, θ) a density field ρ(r, θ) and a vortex-boundary shape r = R(θ) such that, for
0 6 θ 6 π,

ψ ∼ 1
2
r2 sin2 θ as r →∞, (2.29)

ρ→ 1 as r →∞, (2.30)

ψ(R(θ), θ) = 0, (2.31)

∂ψ

∂r

∣∣
r=R(θ)

is continuous across r = R(θ), (2.32)

and

ψ = O(r2) as r → 0. (2.33)

From (2.26)–(2.28) and (2.21), the coupled fields ψ(r, θ) and ρ(r, θ) must satisfy

∂2ψ

∂r2
+

1

r2

(
∂2ψ

∂θ2
− cot θ

∂ψ

∂θ

)
− 1

ρ

(
∂ψ

∂r

∂ρ

∂r
+

1

r2

∂ψ

∂θ

∂ρ

∂θ

)
= Ω0 ρ

2 r2 sin2 θ, (2.34)

and

M2
∞

2r2 sin2 θ

[(
∂ψ

∂r

)2

+
1

r2

(
∂ψ

∂θ

)2
]

+
ρ2
(
ργ−1 − 1

)
γ − 1

= M2
∞
(

1
2

+ Ω0ψ
)
ρ2. (2.35)

We must in addition secure continuity of the tangential velocity component across
the vortex boundary and vanishing of the normal velocity component at the vortex
boundary. Equations (2.31) and (2.32) together ensure this, provided the function R(θ)
is single valued, as we have tacitly assumed.

3. Numerical solution by finite differences
Here we describe a scheme for obtaining numerical solutions to (2.34) and (2.35)

subject to the boundary conditions (2.29), (2.30) and (2.33) and the matching condi-
tions on the vortex boundary (2.31) and (2.32). We use fourth-order-accurate finite
differences in the domain 0 6 θ 6 π/2, 0 6 r < ∞. A difficulty arises in treatment of
the matching conditions on the unknown vortex boundary r = R(θ), because when
M∞ > 0, this boundary does not correspond to a coordinate line in r, θ independent
variables. This was handled by use of the stretching coordinate transformation

ξ = ξ(r, θ) =
r

r + R(θ)
, θ′ = θ. (3.1)

This maps r = R(θ) into ξ = 1
2
, 0 6 θ′ 6 π/2 and r → ∞ into ξ = 1, 0 6 θ′ 6 π/2.

We henceforth omit the prime on the transformed theta variable. Additionally, we
make the transformation of dependent variables, motivated by (2.29)

ψ = Ψ + 1
2
r2 sin2 θ. (3.2)

These transformations give two nonlinear PDEs for Ψ (ξ, θ) and ρ(ξ, θ), 0 6 θ 6 π,
subject to the boundary conditions

Ψ = 0 on ξ = 1, (3.3)
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ρ = 1 on ξ = 1, (3.4)

Ψ ( 1
2
, θ) = − 1

2
R2(θ) sin2 θ, (3.5)

∂Ψ

∂ξ

∣∣∣∣
ξ=

1
2

is continuous across ξ = 1
2
, (3.6)

and

Ψ = O(ξ2) as ξ → 0. (3.7)

These equations and the above boundary conditions contain dependence on R(θ),
which must be determined as part of the solution. Symmetry about the the plane θ =
π/2 is assumed and is enforced by applying the boundary condition ∂Ψ/∂θ|θ=π/2 = 0,
ξ > 0. This is a statement that the vortex always has fore-aft symmetry. It means we
need only consider the domain D ≡

[
0 6 ξ 6 1; 0 6 θ 6 π/2

]
.

Finite difference solutions to the mapped equations were sought on two regular
grids in D, (ξi, θj) = (i∆1ξ, j ∆θ), i = 1, ..., I1, j = 0, ..., J , (ξi, θj) = ( 1

2
+ i∆2ξ, j ∆θ), i =

0, ..., I2, j = 0, ..., J , where ∆1ξ = 1/(2 I1), ∆2ξ = 1/(2 I2) and ∆θ = π/(2 J). These
grids join at the vortex boundary ξ = 1

2
. The vortex boundary R(θ) is represented

by discrete points Rj = R(j∆θ), j = 0, ..., J . Finite-differenced forms of the governing
PDEs were applied at interior points. These exclude the vortex axis θ = 0, the origin
ξ = 0, both of which are coordinate singularities, the vortex boundary ξ = 1

2
and the

outer boundary of D but do include the line of symmetry θ = π/2. Five-point fourth-
order-accurate stencils were used for all Ψ -derivatives. This gives 4 J (I1 + I2 − 2)
equations. Along the vortex boundary Ψ is fixed by (3.5), but its ξ-derivatives are
unknown. By incorporating (3.5), a special form of (2.35) can be constructed on ξ = 1

2
which when applied at θ = j∆θ, j = 1, ..., J , gives J equations. A further J equations
result from satisfying (3.6) at these same points by equating ∂Ψ/∂ξ evaluated by five-
point one-sided differences on each side of ξ = 1

2
. Equation (2.34) was not satisfied

explicitly on the vortex boundary.
On the axis excluding both the origin and the stagnation point θ = 0, ξ = 1

2
, a

special form of the energy equation was satisfied. The stream function close to the
axis must be of the form ψ = 1

2
b(r) r2 θ2 + · · ·, where b(r)/ρ(r) is the local axial

velocity. Using (3.1), (3.2) and expressing q(r) in term of Ψ -derivatives at θ = 0 then
gives a special form of (2.35) valid on θ = 0 as

M2
∞

2

(
1 +

(1− ξ)2

ξ2 R2(0)

∂2Ψ

∂θ2

∣∣∣∣
θ=0

)2

+
ρ2

γ − 1

(
ργ−1 − 1

)
− 1

2
M2
∞ ρ

2 = 0. (3.8)

Using centred finite differences for the Ψ -derivatives in (3.8) then gives I1 + I2 − 2
additional equations.

The coordinate singularity r = 0 is a well known source of difficulty for finite
differences in polar coordinates. Several different strategies were employed with similar
results. We give here a method based on applying a limiting form of the energy
equation when r → 0. Near the origin ψ must be take the form ψ = 1

2
q0 r

2 sin2 θ+· · · =
1
2
q0 R

2(θ)ξ2 sin2 θ + O(ξ3). Letting ξ → 0 in (2.35) and averaging over 0 6 θ 6 π/2
then gives

M2
∞

2

(
1 +

4

π

∫ π/2

0

1

R2(θ)2

∂2Ψ

∂ξ2

∣∣
ξ=0

)2

+
ρ2

0

γ − 1

(
ρ
γ−1
0 − 1

)
− 1

2
M2
∞ ρ

2
0 = 0, (3.9)

where ρ0 is the density at the origin. The Ψ -derivatives at ξ = 0 were evaluated
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by one-sided differences based on a special stencil constructed using the form Ψ =
a2(θ) ξ2 + a3(θ) ξ3 near ξ = 0, and the integral was calculated using a Newton–Cotes
formula.

The above method can be shown to give a total of (2J+ 1)× (I1 + I2− 1) nonlinear
equations for an equal number of unknowns which include the Rj , j = 0, ..., J . Thus
M∞ remains a free parameter and we have a one-parameter branch. This will be
seen to be consistent with the Rayleigh–Janzen expansion to be described in the next
section. The equations were solved by an approximate Newton method. Components
of the Jacobian associated with(Ψ − ρ) unknowns at grid points were evaluated
analytically using a second-order–accurate finite-differenced version of (2.34)–(2.35)
and (3.11)–(3.12). Derivatives with respect to the Rj unknowns were evaluated by
second-order finite differences operating on the residuals. This scheme may be shown
to give an ‘arrowhead’ Jacobian containing a banded structure, with bandwidth 8 J+5,
together with two borders of width J+ 1. The resulting linear system was solved by a
standard method using a code supplied by B. Fornberg. Owing to the approximation
to the the true Jacobian, only linear convergence was obtained. With M∞ fixed, this
method was used to obtain numerical solutions to the nonlinear set of equations with
averaged residuals not exceeding 10−9 in magnitude. The homentropic branch was
investigated by continuing in M∞ from the known analytic solution at M∞ = 0.

4. The Rayleigh–Janzen expansion
We expand the solution in powers of M2

∞, so that

ψ = ψ0 +M2
∞ψ1 +M4

∞ψ2 + · · · , (4.1)

ρ = 1 +M2
∞ρ1 +M4

∞ρ2 + · · · , (4.2)
and

R(θ) = 1 +M2
∞R1(θ) +M4

∞R2(θ) + · · · . (4.3)

On substituting into (2.34) and (2.35) we find that

D2ψ0 = r2 sin2 θ Ω0, (4.4a)

D2ψ1 = N(ψ0, ρ1) + 2ρ1Ω0r
2 sin2 θ, (4.4b)

D2ψ2 = −ρ1N(ψ0, ρ1) +N(ψ0, ρ2) +N(ψ1, ρ1) + (2ρ2 + ρ1
2)r2 sin2 θ Ω0, (4.4c)

. . . . . . . . . . . . . . .

and

ρ1 = 1
2

+ Ω0ψ0 −
1

2r2 sin2 θ
N(ψ0, ψ0), (4.5a)

ρ2 = − 1
2
(γ + 2)ρ1

2 + ρ1 + Ω0(2ρ1ψ0 + ψ1)−
1

r2 sin2 θ
N(ψ0, ψ1). (4.5b)

. . . . . . . . . . . . . . .

The operator D2 takes the form

D2 =
∂2

∂r2
+

(1− µ2)

r2

∂2

∂µ2
, (4.6)

where µ = cos θ.
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Now ψ0 is the stream function for the incompressible HSV and explicitly

ψ0 = 1
2

(
r2 − 1/r

) (
1− µ2

)
(r > 1),

and
ψ0 = − 3

4
r2
(
1− r2

) (
1− µ2

)
(r < 1).

 (4.7)

With ψ0 to hand, we can calculate ρ1 from (4.5a). Then the right-hand side of (4.4b)
is determined and ψ1 calculated. We next calculate ρ2 from (4.5b) and then the right-
hand side of (4.4c) is determined. Clearly, we can proceed in this way to compute the
complete expansion.

This computation is helped by the observation that the right-hand side of each
member of the system possesses a factor 1− µ2. We can see this by noting that

N(f, g) =
∂f

∂r

∂g

∂r
+

(
1− µ2

)
r2

∂f

∂µ

∂g

∂µ
, (4.8)

so that if f contains a factor 1− µ2, so does N(f, g). This suggests that we define ψn
by

ψn =
(
1− µ2

)
ψn. (4.9)

This means that, provided ψn is a well-behaved function of µ, ψn = 0 on the axis of
symmetry µ = 1. Hence it must vanish on the vortex boundary as well, so that (2.31)
is satisfied. We can take a further step by noting that ψ and ρ are even functions of
µ and that this property is inherited by each right-hand side of the system (4.4). This
suggests that we express the right-hand sides in the form(

1− µ2
)∑

s

fs(r)P
′
2s+1(µ). (4.10)

Now

D2
[(

1− µ2
)
P ′2s+1(µ)gs(r)

]
=
(
1− µ2

)
P ′2s+1(µ)

(
d2gs

dr2
− gs

r2
(2s+ 1)(2s+ 2)

)
, (4.11)

so that the problem of integrating the system (4.4) is reduced to solving equations of
the form

d2gs

dr2
− gs

r2
(2s+ 1)(2s+ 2) = fs(r). (4.12)

This is facilitated by the change of variable r = et, which yields

d2gs

dt2
− dgs

dt
− (2s+ 1)(2s+ 2)gs = e2tfs(e

t). (4.13)

Detailed calculation, using Mathematica both to compute the right-hand sides (4.10)
and to solve the equations (4.12), leads to solutions of the form

ψ1 =
(
1− µ2

) (
f

(1)
0 (r)P ′1(µ) + f

(1)
1 (r)P ′3(µ)

)
, (4.14)

ψ2 =
(
1− µ2

) (
f

(2)
0 (r)P ′1(µ) + f

(2)
1 (r)P ′3(µ) + f

(2)
2 P ′5(µ)

)
; (4.15)

we work to O(M4
∞) from now on.

Each function f(a)
b contains the solution of the homogeneous equation

d2gs

dt2
− dgs

dt
− (2s+ 1)(2s+ 2)gs = 0, (4.16)
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namely

Ae−(2s+1)t + Be(2s+2)t.

If we are determining ψ outside the vortex, B = 0 by the conditions at infinity,
while if we are determining ψ inside the vortex A = 0, by the requirement that ψ be
well-behaved at the origin.

Hence, allowing for both exterior and interior forms of ψ, (4.14) and (4.15) show that
we have 10 constants of integration to determine before the solution is complete. Our
next task is to show how the boundary conditions (2.31) and (2.32) accomplish this.

We express the equation of the boundary in the form

R(θ) = 1 +M2
∞w1(θ) +M4

∞w2(θ) + · · · . (4.17)

Then, for either the exterior or interior stream function, (2.31) insists that

ψ
(
1 +M2

∞w1 +M4
∞w2 + 0(M6

∞), θ
)

= 0; (4.18)

so applying Taylor’s theorem,

ψ(1, θ) +
(
M2
∞w1 +M4

∞w2 + 0(M6
∞)
) ∂ψ
∂r

(1, θ) + 1
2

(
M2
∞w1 + · · ·

)2 ∂2ψ

∂r2
+ · · · = 0.

(4.19)

We now expand ψ as in (4.1) and on collecting the terms in 1, M2
∞ and M4

∞ and
equating to zero we find

ψ0(1, θ) = 0, (4.20a)

ψ1(1, θ) + w1

∂ψ0

∂r
(1, θ) = 0, (4.20b)

ψ2(1, θ) + w2

∂ψ0

∂r
(1, θ) + w1

∂ψ1

∂r
(1, θ) + 1

2
w2

1

∂2ψ0

∂r2
(1, θ) = 0. (4.20c)

Next, we must impose (2.32) which gives

∂ψ(+)

∂r

(
1 +M2

∞w1 +M4
∞w2 + · · · , θ

)
=
∂ψ(−)

∂r

(
1 +M2

∞w1 +M4
∞w2 + · · · , θ

)
, (4.21)

where the suffix (+) means outside the vortex and the suffix (−) means inside the
vortex. Expansion of ψ as in (4.1) and collection of terms leads to

∂ψ
(+)
0

∂r
=
∂ψ

(−)
0

∂r
, (4.22a)

∂ψ
(+)
1

∂r
+ w1

∂2ψ
(+)
0

∂r2
=
∂ψ

(−)
1

∂r
+ w1

∂2ψ
(−)
0

∂r2
, (4.22b)

∂ψ
(+)
2

∂r
+w1

∂2ψ
(+)
1

∂r2
+w2

∂2ψ
(+)
0

∂r2
+ 1

2
w2

1

∂3ψ
(+)
0

∂r3
=
∂ψ

(−)
2

∂r
+w1

∂2ψ
(−)
1

∂r2

+w2

∂2ψ
(−)
0

∂r2
+ 1

2
w2

1

∂3ψ
(−)
0

∂r3
. (4.22c)

We recall that ψs contains a factor 1 − µ2 which can be cancelled throughout the
systems (4.21) and (4.22). Equations (4.20b,c) show that w1 is linear in µ2 and w2 is
quadratic in µ2 so, accordingly

w1 = A1 + A2µ
2, (4.23)
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and

w2 = B1 + B2µ
2 + B3µ

4. (4.24)

Now the functions ψ(+)
1 , ψ(−)

1 , ψ(+)
2 and ψ

(−)
2 contain ten constants, as we have seen.

We have thus 15 constants to determine. Equation (4.20b) is linear in µ2, so since it
holds for both ψ

(+)
1 and ψ

(−)
1 , it yields four equations. Equation (4.20c) is quadratic

in µ2 and thus yields six equations. The continuity conditions (4.22) similarly yield
five equations, so that the boundary conditions (4.20) and (4.22) together yield 15
equations. Of course, this does not prove that the 15 unknown constants can be
found, but actual calculation shows the system is non-singular. We give the results
only for the constants determining the shape, which are

A1 =
155

672
, A2 =

17

32
,

B1 = − 7597469753

61347686400
+

842513627

12415603200
γ,

B2 = − 3436748983

54628654080
+

6536261

31834880
γ, B3 =

199522751

472975360
− 59607

826880
γ.


(4.25)

We can deduce that the axis ratio of the shape of the vortex is

R(0)/R(π/2) = 1 + 0.53125M2
∞ + (0.23640 + 0.13323 γ)M4

∞ + O(M6
∞), (4.26)

so that the effect of compressibility is to make the vortex prolate. The effect of
compressibility on the speed of propagation can be measured by the dimensionless
group

G ≡ U∞R(π/2)/|Γ |,
where Γ is the circulation around the vortex in any axial half-plane. Now

Γ = −Ω0

∫ π

0

∫ R(θ)

0

ρ(r, θ)r2 sin θ dr dθ, (4.27)

so that

G ≡ U∞R(π/2)/|Γ | = 0.2− 0.10565M2
∞+ (0.01568− 0.026082γ)M4

∞+O(M6
∞). (4.28)

The results were checked by substituting ψ(R, θ) and ρ(R, θ) in the exact governing
equations (2.34) and (2.35) and expanding the results of these substitutions in powers
of M2

∞, Mathematica being used to carry out the algebra. It was verified that the terms
in 1, M2

∞ and M4
∞ vanished. The same procedure was used on the exact boundary

conditions (2.31) and (2.32). As a further check the circulation Γ was calculated from∫ ∞
−∞

(u− 1)dx, (4.29)

where u(x) is the velocity along the axis of symmetry, given by

u(x) =
1

ρ r2 sin θ

∂ψ

∂θ

∣∣∣∣
θ=0

; (4.30)

because ψ contains a factor sin2 θ, the limit θ → 0 can be taken.
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M∞ Property [20,16;32] [40,32;64] Ext.[0] R-J, O(M4)

0 R(0) 1.004 97 1.000 22 0.999 90 1.0
0 R(π/2) 1.004 97 1.000 22 0.999 90 1.0
0 G 0.198 02 0.199 82 0.199 94 0.2

0.1 R(0) 1.013 39 1.008 20 1.007 85 1.007 67
0.1 R(π/2) 1.007 66 1.002 80 1.002 47 1.002 30
0.1 ρ0 0.993 45 0.993 68 0.993 70 0.993 72
0.1 M0 0.151 64 0.150 57 0.150 50 0.150 46
0.1 G 0.196 79 0.198 74 0.198 87 0.198 94

0.3 R(0) 1.086 75 1.074 37 1.073 55 1.072 76
0.3 R(π/2) 1.029 76 1.021 45 1.020 89 1.020 53
0.3 ρ0 0.938 02 0.941 24 0.941 45 0.941 44
0.3 M0 0.468 82 0.462 91 0.462 52 0.462 16
0.3 G 0.186 64 0.189 94 0.190 16 0.190 32

0.5 R(0) 1.279 97 1.230 74 1.227 46 1.222 76
0.5 R(π/2) 1.078 35 1.055 84 1.054 34 1.055 86
0.5 ρ0 0.812 97 0.833 68 0.835 06 0.825 96
0.5 M0 0.831 82 0.803 89 0.802 03 0.805 16
0.5 G 0.163 72 0.171 37 0.171 88 0.172 28

Table 1. Principal solution parameters for M∞ = 0, 0.1, 0.3, 0.5 using each of two grids,
[I1, I2; J] = [20, 16; 32] and [I1, I2; J] = [40, 32; 64]. G = U∞ R(π/2)/|Γ |. Also shown are values
obtained from Richardson extrapolation assuming fourth-order accuracy and results from the
Rayleigh–Janzen expansion to O(M4

∞).

5. Results and discussion
We discuss solutions to the finite-difference formulation described in §3 obtained

using two grids, [I1, I2; J] = [20, 16; 32] and [I1, I2; J] = [40, 32; 64]. These were
found by starting with the known solution for M∞ = 0 and incrementing M∞ along
the homentropic branch. For all solutions we use γ = 1.4 unless otherwise specified.
Table 1 lists some principal solution parameters obtained from the numerical solutions
at several values of M∞ compared with the predictions of the Rayleigh–Janzen
expansion. Numerical values obtained using the two grids are shown in the third
and fourth column respectively. The fifth column displays values obtained by the use
of Richardson extrapolation with the assumption of fourth-order accuracy. There is
generally near four-figure agreement with the Rayleigh–Janzen results, although we
note that the discrepancy is somewhat larger than one might expect at our smallest
finite value M∞ = 0.1, where errors in the Rayleigh–Janzen calculation are expected
to be uniformly of O(10−6). This may be attributable to some loss of accuracy at the
coordinate singularity r = 0 produced by our strategy of averaging over θ. It is well
known that this can degrade global accuracy. We were unable to perform calculation
with [I1, I2; J] = [80, 64; 128] which would be required to confirm our estimate of
fourth-order accuracy of the finite difference method.

In figures 1–3 we show contours of ψ(x, y), ρ(x, y), and M(x, y) respectively for
M = 0.5 in an axial plane with x = r cos θ and y = r sin θ. The slight prolate shape
of the vortical bubble with aspect ratio R(0)/R(π/2) = 1.040 is evident. The density
contours show the density first increasing along the axis as we move towards the vortex
from infinity, becoming maximum at the stagnation point where the bubble boundary
intersects the axis, then decreasing to a value ρ0 = 0.834 at the origin, or vortex
geometrical centre. The Mach number contours of figure 3 show two regions where
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Figure 1. Contours of stream function ψ for a compressible Hill’s spherical vortex M∞ = 0.5.
Solid lines ψ < 0. Dotted lines ψ > 0. Coordinates x = r cos θ, y = r sin θ.
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Figure 2. Contours of density ρ for a compressible Hill’s spherical vortex M∞ = 0.5.
Solid lines ρ > 1. Dotted lines ρ < 1.
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Figure 3. Contours of local Mach number for a compressible Hill’s spherical vortex M∞ = 0.5.
Solid lines M > M∞. Dotted lines M < M∞.

M(x, y) > M∞, one surrounding the vortex centre where the contours of constant M
are elliptical, and another in the irrotational stream just outside the vortex boundary.
As M∞ is increased along the homentropic branch the aspect ratio of the vortex
increases slightly as may be seen from the entries in table 1, the detailed vortex
boundary shapes of figure 4 and the plot of R(0) and R(π/2) versus M∞ in figure 5.
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Figure 4. Shape of vorticity boundary. From inside moving outwards,
M∞ = 0.3, 0.4, 0.5, 0.55, 0.575.
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Figure 5. R(0) (dashed line) and R(π/2) (solid line) versus M∞. Symbols show computed values.
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Figure 6. Density ρ0 (dashed line) and Mach number M0 (solid line) at origin x = y = 0.

The finite-difference computations were continued to a value M∞ = 0.598 near
which, with our maximum resolution [I1, I2; J] = [40, 32; 64], the Jacobian became
nearly singular. No converged solutions with M∞ > 0.598 could be found. Figure 6
shows the gas density ρ0 and Mach number M0 at the the origin of coordinates, or
vortex geometrical centre r = 0, versus M∞. At M∞ = 0.598 we find ρ0 = 0.7543,
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Figure 7. Density ρ along vortex axis. In order of decreasing density at x = 0,
M∞ = 0.3, 0.4, 0.5, 0.55, 0.575, 0.598.

from which M0 can be obtained from

M2
0 =

1

ρ
γ−1
0

[
M2
∞ −

2

γ − 1

(
ρ
γ−1
0 − 1

)]
, (5.1)

giving M0 = 0.9986. The flow is thus nearly sonic at r = 0 for our largest M∞
and a detailed examination of the M(r, θ) field for this case showed that the flow
was nowhere locally supersonic. Thus we do not find numerical solutions for the
compressible Hill’s spherical vortex corresponding to transonic flow. The value of M∞
for which M0 = 1 can be estimated from the Rayleigh–Janzen expansion by using the
perturbation solution to evaluate the density ρ0 and the velocity q0 at r = 0, with the
result that

ρ0 = 1− 5
8
M2
∞ −

(
5

448
+

25 γ

128

)
M4
∞, (5.2)

q0 = 3
2

+ 15
56
M2
∞ −

(
3386709

9865856
− 639 γ

9152

)
M4
∞. (5.3)

A straightforward calculation shows that M0 = M∞ q0/ρ
(γ−1)/2
0 . Substituting (5.2) and

(5.3) into this expression and expanding q0/ρ
(γ−1)/2
0 to O(M4

∞) then gives an estimate
of M0 from the Rayleigh–Janzen expansion. On putting M0 = 1, γ = 1.4 and solving
for M∞ we find M∞ = 0.60308 in fair agreement with the finite-difference result.
Profiles of the gas density ρ(x) and local Mach number M(x) along the vortex axis
r = x are shown in figures 7 and 8 respectively for several values of M∞ in the range
0.3 6M∞ 6 0.598. Near x = 0 there may be seen some non-smoothness in the profiles
which appears to be associated with the coordinate singularity. This was found to
increase when M∞ → 0.598 as can be clearly seen in these plots.

There are several possible reasons for our failure to find transonic flow solutions.
One is that there is a turning point at or near M∞ = 0.598. Several attempts were
made to continue in other parameters such as R(0), R(π/2), or ρ0, and in addition
the code was modified to allow arclength continuation in the space of all of the
parameters of the discrete problem. These were not successful, the branch from M∞
terminating in each case very near M∞ = 0.598. A second possibility is that the branch
terminates where the flow becomes locally supersonic owing to the development of a
singularity. A third possibility is that solutions with locally supersonic flow require the
breaking of fore-aft symmetry of the vortex structure imposed by us in the problem
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Figure 8. Mach number M(x) along vortex axis. In order of increasing Mach number at x = 0,
M∞ = 0.3, 0.4, 0.5, 0.55, 0.575, 0.598.
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Figure 9. Area ratio A(x)/A∗ plotted as log(A(x)/A∗ − 1) along vortex axis.

formulation. The flow along the axis can be viewed as one-dimensional flow with
area change, from which it is well known that along a one-dimensional streamtube,
the flow can be either symmetrical about a point of minimum streamtube area with
subsonic velocities on both sides, or else subsonic on one side and supersonic on the
other side of an asymmetrical streamtube. With the present imposed symmetries, the
only way the latter can can occur is if a double throat is formed along the axial
streamtube, with one area minimum in each half of the vortex. Figure 9 shows a plot
of log[A(x)/A∗ − 1] where A(x)/A∗ is the one-dimensional area ratio given by

A(x)

A∗
=

1

M(x)

[
2

γ − 1

(
1 +

γ − 1

2
M(x)2

)] γ+1
2(γ−1)

, (5.4)

where A∗ is the sonic area and M(x) is the axial Mach number distribution of figure 8.
Figure 9 shows that A(x)/A∗ − 1 is very slowly varying near x = 0, so that the axial
streamtube is very nearly of constant area along much of the axis within the vortex.
This was confirmed by a detailed study of the near-axial contours of ψ. We find
no evidence of the formation of a double throat streamtube geometry although we
cannot rule this out. Of course if locally supersonic solutions do exist, it may be that
the flow first becomes supersonic just off the axis, as is known to occur for Laval
nozzle flow, (e.g. see Shapiro 1954, p. 828), and that the double nozzle streamline
geometry, with axial supersonic flow appears only at larger Mach number. A fourth
scenario is that our treatment of the coordinate singularity is not sufficiently refined
to capture the transition to supersonic flow. This cannot be ruled out.
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Lastly we mention an attempt to investigate a possible broken branch, in which
the existence of symmetrical shockless transonic solutions resume at M∞ > 0.598,
following a gap along the real M∞ line. To do this, we turned on complex arithmetic,
thus complexifying our code and allowing solutions in a space of complex Mach
number M∞ = MR

∞ + iMI
∞ where MR

∞ and MI
∞ are the real and complex part

respectively. In this complexification, the physical parameters defining the solution
such as involve the boundary conditions and the various step sizes are of course kept
real. We found no difficulty in obtaining complex-valued solutions along trajectories
in the MR

∞ + iMI
∞ plane along which MR

∞ > 0.598, |MI
∞| 6= 0. However all attempts to

return to the real axis for MR
∞ > 0.598 were unsuccessful. In fact it was always found

that as the real M∞ axis was approached from above and below with MR
∞ > 0.598, the

respective solutions appeared to approach complex conjugate states. This suggests
the presence of a branch cut extending along the real axis from MR

∞ = 0.598. We
note the presence of an obvious source of non-analyticity in our basic equations
(2.34) and (2.35) through the fractional powers of ρ. However even with integral γ,
non-analyticity remains. Consider for example γ = 2. Equation (2.35) can then in
principle be solved for ρ as a function of the ψ-derivatives, and substitution into
(2.39) then gives a single equation for ψ. Non-analyticity remains however because
(2.35) is a cubic equation for ρ. In fact calculation with γ = 2 produced very similar
qualitative behaviour to that described above for γ = 1.4.

6. Concluding remarks
We have constructed both numerical and perturbation solutions which describe the

steady propagation of an prolate-spheroidal-like vortex in a compressible ideal gas.
These vortex states correspond to a homentropic continuation of the classical Hill’s
spherical vortex in an incompressible fluid, to finite Mach number. This continuation
is not unique and we discuss in the Appendix two different admissible continuations,
each corresponding to homenthalpic flow, in which S = 0 outside the vortex and
S = S(ψ) inside the vortex bubble. Of these, the first corresponds to a flow in
which S is proportional to ψ within the vortex. We present no analysis or detailed
solutions for this case. The second homenthalpic branch is shown to be generated
from the present homentropic one by a transformation of the steady Euler equations
due to Munk & Prim (1947). This gives an homenthalpic flow with the same vortex
shape, general streamline pattern and Mach number distribution as the equivalent
homentropic case at the same free-stream Mach number, but with different kinematic
and thermodynamic properties internal to the vortex. These properties are determined
by the Munk–Prim transformation.

The numerical evidence indicates that our homentropic branch is continuous from
M∞ = 0 to M∞ ≈ 0.598 at which value it terminates, probably due to non-analyticity
near the vortex centre associated with the onset of locally transonic flow. An attempt
to find a continuous branch of solutions or even isolated solutions for special values
of M∞ > 0.598 failed. Our evidence for the existence of a singularity terminating
the homentropic branch rests mainly on the non-existence of a turning point, which
itself indicates non-analyticity, and the behaviour of solutions to our complexified
codes, which seem to indicate branch-point type behaviour. The axial streamtubes at
Mach numbers close to M∞ = 0.598 show extremely slow axial area variation near
the incipient sonic point and this may indicate a very weak singularity.

The non-existence of a continuous family of shock-free transonic flow about airfoils
of fixed shape is well known (Morawetz 1956, 1957, 1958). Barsony-Nagy, Er-El &
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Youngster (1987), Moore & Pullin (1987) and Ardalan et al. (1995) have provided
numerical and analytical evidence supporting the existence of continuous families of
shock-free transonic flows with closed free-streamlines. In these flows an annulus of
transonic irrotational flow surrounds the free streamlines, which can be viewed as
embedded vortices. In view of this we are surprised at our failure to find compressible
Hill’s spherical vortices containing regions of smooth transonic flow. Our flow is
different to those cited above in that nearly-sonic conditions first appear within the
vortex, very near to and possibly right at the vortex geometrical centre. We know of no
existence theorems relevant to transonic rotational flow with compact vorticity. The
question of existence of this type of vortex-flow for non-trivial boundary conditions
remains an open question.

D.I.P. was partly supported by a grant from the EPSERC of the UK. We acknowl-
edge a referee who pointed out the relevance of the Munk–Prim transformation.

Appendix. Homenthalpic continuation
We demonstrate alternative continuations to M∞ > 0 by considering homenthalpic

flow. We start from (2.16) with the assumption that H0(ψ) = H00 = const throughout
the fluid, with the result that

η

r sin θρT
=

dS

dψ
≡W (ψ). (A 1)

The entropy equation of state is

p = p∞ ρ
γ exp (S) , (A 2)

where p∞ is the (dimensionless) pressure at infinity and where S has been made
dimensionless against Cv , the specific heat at constant volume.

We make the function W dimensionless against the quantity p∞a
2/R U∞, where R

is the gas constant. The dimensionless form of the right-hand side of (A 1) is then

dS

dψ
= γ (γ − 1)M2

∞W (ψ). (A 3)

In lieu of (2.24) we now choose W (ψ) = −Ω0:

Ω0 = 15
2

(inside the HSV),

Ω0 = 0 (outside the HSV),

}
(A 4)

and retain this value of W (ψ) for the compressible case thus defining a homenthalpic
continuation of the HSV to M∞ > 0. Equation (A 3) can now be integrated to give

S = −γ (γ − 1)M2
∞Ω0 ψ. (A 5)

Following the steps giving (2.34)–(2.35), while using (A 2), (A 4) and (A 5) and the
equation of state for a perfect gas then gives the dimensionless forms of the vorticity
and energy equations

∂2ψ

∂r2
+

1

r2

(
∂2ψ

∂θ2
− cot θ

∂ψ

∂θ

)
− 1

ρ

(
∂ψ

∂r

∂ρ

∂r
+

1

r2

∂ψ

∂θ

∂ρ

∂θ

)
= Ω0 ρ

γ+1 r2 sin2 θ exp
(
−γ (γ − 1)M2

∞Ω0ψ
)
, (A 6)
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and

M2
∞

2r2 sin2 θ

[(
∂ψ

∂r

)2

+
1

r2

(
∂ψ

∂θ

)2
]

+
ρ2

γ − 1

[
ργ−1 exp

(
−γ (γ − 1)M2

∞Ω0ψ
)
− 1
]

= 1
2
M2
∞ρ

2. (A 7)

Equations (A 6)–(A 7) define a homenthalpic continuation of the Hill’s spherical vortex
to compressible flow. The boundary conditions (2.29)–(2.33) remain unchanged. We
have not solved (A 6)–(A 7) but presume that for fixed M∞, they give a different
detailed vortex structure to the homentropic case (2.34)–(2.35).

It may be shown that the above homenthalpic continuation of the incompressible
HSV is not itself unique. We consider the transformation of Munk & Prim (1947)
who showed that for every solution [u, p, ρ, T ,H0, S] of the steady Euler equations,
there exists a set of further solutions [u∗, p∗, ρ∗, T ∗, H∗0 , S

∗] such that

u∗ = λ u, ρ∗ =
1

λ2
ρ, p∗ = p,

T ∗ = λT , H∗0 = λ2 H0, S∗ = S + γ log λ2,

 (A 8)

where λ = λ(ψ) is an arbitrary function of ψ and dψ∗/dψ = 1/λ. For swirl-free flow
in our present spherical polar coordinates, the vorticities are related by

η∗ = λ η − ρ r sin θ u2

(
dλ

dψ

)
. (A 9)

It is straightforward to show that (2.16) is invariant under (A 8)–(A 9), as is local
Mach number M ≡ q/c = M∗ = q∗/c∗.

We now use this transformation applied to our homentropic flow to generate
an equivalent homenthalpic flow, and show that this does not correspond to the
continuation defined by (A 1)–(A 7). For our homentropic flow S = 0, H0 = H00

outside the vortex and S = 0, H0 = Ω0ψ+H00 inside, where H00 = 1/2+1/((γ−1)M2
∞).

The equivalent homenthalpic flow has H∗0 = H00 everywhere. It follows from (A 8) that
ouside the vortex λ = 1, η∗ = η = 0, S ∗ = S = 0. Inside the vortex H∗0 = H00 = λ2 H0,
from which it follows, using λ = dψ/dψ∗, that

dψ∗

dψ
=

1

H
1/2
00

(H00 + Ω0 ψ)1/2 . (A 10)

Integrating, using ψ∗ = 0 when ψ = 0, and inverting the result gives

ψ =
H

1/3
00

22/3 Ω0

(
3Ω0ψ

∗ + 2H00

)2/3 − H00

Ω0

, λ =
21/3 H

1/3
00

(3Ω0ψ∗ + 2H00)
1/3
, (A 11)

and we note that λ = 1 when ψ = 0. The entropy S∗(ψ∗) follows from (A 8) and
(A 12), from which can be obtained, for the equivqlent homenthalpic vortex, within
the vortex itself

W ∗(ψ∗) ≡ dS∗

dψ∗
= − 2Ω0γ

3Ω0ψ∗ + 2H00

. (A 12)

The streamline geometry, including the vortex-boundary shape, and the internal Mach
number distribution for the equivalent homenthalpic vortex are identical to those for
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the original homentropic vortex but the detailed internal distributions for the other
flow properties differ for the two solutions.

Comparing (A 13) to (A 5) shows that these homenthalpic continuations of the Hill’s
spherical vortex to compressible flow are not equivalent. Moreover they apparently
cannot be transformed into each other by a Munk–Prim transformation. Expansion
of (A 13) in powers of M2

∞, however, gives

dS∗

dψ∗
= −γ (γ − 1)M2

∞Ω0 + 1
2
γ (γ − 1)2 M4

∞
(
1 + 3Ω0ψ

∗)+ O(M6
∞). (A 13)

Hence (A 5) and (A 14) agree to O(M2
∞), when M2

∞ is small.
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